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Abstract- The purpose of this paper is to develop a simple and approximate method with sufficient
accuracy for predicting the effect of shearing strains in the middle surface of the walls, which reflect
the shear lag phenomenon, on the lateral buckling of thin-walled open member. An energy equation
for the lateral buckling has been derived in which the effects of torsion, warping of the member and,
especially, the shearing strains in the middle surface of the wall are taken into account. The energy
equation can be applied for a prismatic thin-walled member with any kind of open cross-section,
for any loading system, and for any end boundary conditions. Some numerical examples by using
optimization techniques are given to show the accuracy and applicability of the proposed method
here. The results are compared with known results from experiment and finite element method. and
good agreement is obtained, Finally. the effect of the shearing strains in the middle surface of the
walls on lateral buckling of the thin-walled open member and the effect of the number of Simpson's
nodal points taken on optimal values are discussed, L 1997 Elsevier Science Ltd, All rights reserved,

INTRODLCTION

As far as the lateral buckling of the thin-walled member is concerned, the buckling usually
occurs by twisting or by a combination of bending and twisting, and the buckling failure
will be sensitive to the magnitude of the deflections, Although many recent papers have
been dedicated to the lateral buckling of the thin-walled open member, the research seems
to be confined to the following assumptions:

(a) the cross-section is rigid in its own plane;
(b) the shearing deformations along the middle surface of the walls are neglected,

Classical analyses were obtained based on the Timoshenko and Gere, and Vlasov's
theories (1961), It must be emphasized that the classical analyses are approximate because
it neglects the deformation effect of the secondary shearing stresses due to warping restraint
which reflect the shear lag phenomenon, Although the problem of shear lag in its mani­
festations has been recognized for several decades and has been studied in detail both
analytically and experimentally for thin-walled closed member, relative few studies have
been made on the effect of the shearing strains along the middle surface of the walls on the
lateral buckling of thin walled open member. When the shearing strains are taken into
account, the mathematical aspect of the problem becomes considerably complicated as it
leads, for example, to an integro-differential equation in partial derivatives in the unknown
warping function, for which no closed form solution is available (Mentrasti, 1987). A
second reason is that Vlasov's assumption (Vlasov, 1961) of no shear deformations along
the middle surface of the walls is known to be valid for the thin-walled member of open
cross-section. Up to now his theory on the thin-walled open member is taken as the base
of many analytical methods,

If the effect of the shearing strains on the buckling is significant, a quick evaluation of
the possible shearing strain effect is of importance to a practising engineer at the early stage
of the design of thin-walled structures with open cross-section. A computer run at this stage
is neither feasible nor economical as even the cross-section itself might be changed in further
studies. In this paper, the writer developed a simplified approach to evaluate the effect of
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Fig. 1. Thin-walled open member with coordinate system.
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the shearing strains in thin-walled open member. To reduce the amount of numerical work
in developing the approach, a simply supported doubly symmetric thin-walled member
subjected to a lateral point load at midspan, as shown in Fig. I, is used to illustrate the
approach developed to solve for the lateral buckling which the middle surface shear strains
are accounted for in the case of open indeformable cross-sections, which arise from the
shear stresses in equilibrium with the normal stresses variable along the member axis. An
energy equation is derived which governs the equilibrium of the member. The equation is
solved by using optimization techniques. The accuracy of the approach is compared with
the solutions of experiment and finite element method (the latter did not take into account
the shear strains in the middle surface of the walls). Finally, three typical examples are
given to show the effect of the shearing strains on the lateral buckling of the thin-walled
open member. It is shown that the shearing strains can be neglected in calculating the
lateral critical load of the member having a doubly symmetrical cross-section.

E!'<ERGY EQUAnON

Consider a prismatic thin-walled open member shown in Fig. I, the present theory is
based on the following three assumptions

(a) The cross-section can be regarded as rigid in its own plane.
According to the Vlasov's assumption, the tangential displacement of any point on

the centric line of the thin wall of the cross-section can be expressed as

d(s,:) = p(s)¢(::) (I)

in which p(s) is the distance from the shearing center of the cross-section to the tangential
line of the point s, and ¢(::) is the twist angle of the cross-section.

(b) The membrane stresses of (J\ and (J, parallel to the x and y axes are much smaller
than the longitudinal stress (Je. and thus by Hooke's law, the longitudinal strain

in which E is the Young's modulus of elasticity.
(c) Kollbrunner and Hajdin's assumption for warping displacement is adopted, and

thus the distribution of the warping displacement in the thin-walled member can be written
as (Kollbrunner and Hajdin)

w(s,::) = -w(s)O(::) (2)

in which w(s) is the sectorial coordinate with respect to point C; B(::) is a function
representing the distribution of the warping along the length of the member, and for open
cross-section
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w(s) = r' p(s) ds.
Jo
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(3)

Longitudinal normal strain
The longitudinal normal strain on the center line of the thin wall due to warping can

be obtained by the kinematic equation of elasticity:

e" = ow/cz = -w8' (4)

in which each prime denotes one derivative with respect to z.
The moment of My, applied to the major axis, causes the section to twist and, when

coupled with shears, causes an additional deflection u in the x-direction during buckling.
The moment creates a longitudinal normal strain given by Young and Trahair (1992)

(5)

Shearing strains
Because the shear strains due to bending of the thin-walled member are neglected, the

shearing strains of the thin-walled member consist of ones due to warping and uniform
torsion. The shearing strains in the middle surface of the walls due to warping are (Vlasov,
1961 )

(c = ad;oz+cw/os = pep' -aw/cs8.

Substituting eqn (3) into the above equation gives

~"c = p(ej/ -V). (6)

When the warping is unrestricted, only the so-called St Venant stresses and strains are
present. Generally, the distribution of shearing strains in a thin-walled open member may
be shown to be related to the rate of torsion by the expression

(7)

in which r is the distance to any point in the cross-section measured normally from its
center line.

Combining eqns (4), (5), (6) and (7) gives

e = -xu" -wO';

~' = 2r¢' +p«(f/ - 8).

The expression for the strain energy, U. stored in the thin-walled open member is

in which 1:.1' is the whole cross-section, and G is the shearing modulus of elasticity.
Substituting eqns (8) and (9) into eqn (10) yields

(8)

(9)

(10)
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The quantities in parentheses are various geometric properties of the cross-section.
In particular:

I, = h, ~'(h ds-the second moment of area about the y-axis;
1" = SL' u} t ds-the warping moment of inertia;
J = h, 4r2 t ds-the St Venant torsional constant;
I p = h, p2 t ds-the polar moment of inertial of the cross-section about the center of twist.

The other terms are zero for the following reasons:

h, xwt ds = 0 because the warping displacements produce no net moment about the y-axis
(Gellin and Lee. 1988);
h, 2rpt ds = 0 for a prismatic thin-walled open member.

As a result, eqn (II) reduces as

(12)

The potential energy. V, of the loading system measured from the straight untwisted
state is defined by

V = - Cf T,AJdsd.::
.., 0 LS

(13)

in which T, is a system of conservative surface forces acting on the member in the y-.:: plane,
and A, is the displacement components corresponding to the T,.

For the lateral buckling analysis, the change in potential energy associated with the
buckling process may be expressed as

u = - v.

Substituting eqns (12) and (13) into the above equations gives

(14)

The present formula of energy equation for lateral buckling can be applied for a
prismatic thin-walled member with any kind of open cross-section, for any loading system,
and for any end boundary conditions.

OPTIMIZATION PROBLEM AND METHOD OF SOLUTION

The optimum problem is treated here in a form which relates to the common variational
method of analysis. For the sake of simplicity, a simply supported open member of length
2L having a doubly symmetrical cross-section and subjected to a lateral point load P at
midspan is considered. Due to the member symmetry. half the member was analyzed. When
P is applied at the centroid of the cross-section. the potential energy. V, is given by Masur
and Milbradt (1957)
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v = - r.
L

,w\1> . U" d.::-J,
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( 15)

in which M, is the internal moment about the x-axis. For a simply supported beam subjected
to a lateral point load at midspan, the potential energy becomes

v= -p r
L

1>'u"(L-:)d.::-.
Jo

Substituting eqn (16) into eqn (14), we have

(16)

(17)

For the case of a member subjected to no lateral forces and with both ends "simply
supported", the lateral curvature of u" in eqn (17) can be eliminated by the following
relation

EI,.u"-P(L-:)1> = O.

to give the following energy expression:

The first variation with respect to 1> and 0, respectively. yields

rL

[GN' 61>' +Glf'(1)' - e) 61>' ~ p 2 /EI,(L - :)21> 61>] d.::- = 0:J,

fL [EI"e' 6e' - GIf'( 1>' - e) 6e] d.::- = O.
.0

(18)

(19)

(20)

(21 )

Noting that the processes of variation and differential can be permutable, eqns (20)
and (21). respectively, can be integrated by parts as follows:

(22)

EI,,8' 6e If - r
L

[EI,Jr +Glp (1)' -e)] Mld.::- = O.
o Jo

(23)

To satisfy the extremum condition of variation for any arbitrary values of 61> and MJ,
the terms under the integral must vanish. This condition produces the following governing
differential equations for the lateral buckling:

(24)

(25)
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The corresponding natural boundary conditions at:: = 0 and z = L, respectively, must
be satisfied too

GJ¢'+GII'(Ij/-O) =0;

or ¢ = Const. ;

EI,JJ' = 0;

or (J = Const.
Equation (24) gives

Differentiating with respect to z gives

From eqn (25) we have

(26)

(27)

(28)

(29)

¢' -(J = -EI,,(J"/GII'

= -EI" {J.1¢'" +p 2[-2(L-z)¢+(L-z)2¢']/(EJrGlp)}/GII' (30)

in which J.1 = I +Jill'.
Substituting eqns (28) and (30) into eqn (19) and introducing

~ =(L-z)/L;/. = PIP,; and (PY = (EI"EIJ/L6

give

{f[0:4/L4~4¢2+ fex6!L6(2~¢+(¢'nd~}/.4

+ {f [2J.1Ct" :L2~2¢¢" +2J.1C/!L4(2~¢+(¢')¢'" - ~2¢2] d~}/.2

+ f[li2ex2/L2(¢''')2+J.12(¢'')2+k2L2(¢Y]d~ = 0 (31)

in which k2 = GJ/EJ,,; and 0:
2

= EI,jGlp '

When the member buckles laterally, the smallest such value that yields a non-trivial
second solution for the member is known as the critical load called Per. The critical value
of Pcr may be obtained by minimizing eqn (31) with respect to the angle of twist ¢. In
mathematical terms, the optimization problem may be cast in the following form:

Find the critical load Per.
Minimize eqn (31).
Subject to

¢(O) = 0;

¢"(O) = 0;

¢'(I) = 0:

J.1cD'" ( I) - k 2 e¢'( I) = ex 2!L 2/.2 [2¢(l) + ¢'(l )].

(32a)

(32b)

(32c)

(32d)
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For a cantilever thin-walled member subjected to a lateral point load, P, at the free
end

v= -PlL

¢·u"::d::. (33)

When a thin-walled member under equal and opposite end moments, M, and V is
given by

v= - f M¢'u"d::, (34)

substituting eqns (33) and (34) into eqn (14), respectively, and repeating the derivation
procedure outlined above, we can develop the formula corresponding to the cantilever
boundary under pure moment, respectively, for lateral buckling analysis of thin-walled
open member by using the optimization technique.

To solve the optimization problem, ¢ is approximated by a suitable function that
satisfies the boundary conditions pertaining to the type of problem. In general, for lateral
buckling of a thin-walled member, a solution of the optimization problem can be expanded
in the Fourier series as

"'( ') '\'. . '')' I ')'I' <; = £...sln/7[;/_1 = ._.... ,m. (35)

The integrations in eqn (31) are evaluated numerically using Simpson's rule. A numeri­
cal optimization technique based on the direct search optimization method (Gallagher and
Zienkiewicz, 1973) is used for the purpose of minimization of eqn (31). The Simpson's
nodal points taken in the approximation of ¢ are equally spaced along the length of the
member, and the effect of the number of the nodal points taken on the optimal results will
be discussed later.

NUMERICAL EXAMPLES

Case I. Simply supported thin-walled member
Because thin-walled I-beams are traditionally used extensively in buildings and bridges,

for the sake of brevity, only two doubly symmetric simply supported thin-walled I-members
subjected to a lateral point load at midspan are selected as numerical examples. The data
for these examples come from Thevendran and Shanmugam (1991), and Away et al. (1978).
The results considering the shearing strains in the middle surface of the walls in this paper
are compared with the experimental result and more exact value obtained by using the
finite element method as shown in Table I in which five equally spaced nodal points are
used.

It can be seen from Table I that the proposed lateral buckling loads in this paper are
all close to the experimental one and the one determined by finite element method, the later
did not take into account the shearing strains. Their relative differences to the present
method are only 3.78% and -2.47%, respectively.

Table 1. Comparison of results of Pee

Cases Example of Thevendran et al. Example of Away et al.

Methods
Pee

Difference

Experiment Present M
707.80 N 681.05 N

3.78%

F.E.M. 2 x 10 mesh
73.3 kips

-2.47%

Present M
75.11 kips
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Table 2. Comparison of results of Pcc

Methods

Experiment of Thevendran 1'1 al.
Present analysis

Table 3. Comparison of results of M"

Methods

Example given by Xia and Pan
Present analysis

68110
704.77

/"fc,. (kN-m)

431.00
43115

Case 2. Cantilaer thin-walled member
A test was done by Thevendran et al. (1991), his specimen is cantilever I-beam of

length L = 465 mm. web thickness t" = 6 mm, overall web depth d = 75 mm, flange
thickness tr = 10 mm, and flange width b = 23.5 mm. The test is carried out using a
specimen from piexiglass sheets having average values of Young's modulus E = 2860
N/mm" and Poisson's ratio v = 0.36. The present result is compared with the one obtained
from the experiment in Table 2.

From Table 2 it can be seen that the Per value obtained from the present method agrees
well with the result from the experiment, the relative difference is within 3.48%.

Case 3. Under pure moment
The example came from China (Xia and Pan, 1988). An I-beam, subjected to equal

and opposite end moments. was analyzed. The related data are as follows: E = 2.1 X 105

MPa; G = 0.81 X 105 MPa; I) = 3549 cm4
, J= 131 cm4

; I" = 1.717.716 cm6
; 2L = 8.0 m.

The comparisons of the results obtained are summarized in Table 3.
It can be seen that the result from this paper is very close to the analytic one from Xia

and Pan. and the relative difference is almost nil.

EFFECT OF SHEARING STRAINS ON LATERAL BeCKLING

If the shear strains along the middle surface of the walls are neglected. eqn (31) will be
reduced to

(36)

The ;. can be solved by the same calculation as the previous section. The same examples
as the above section are selected to demonstrate the effect. The different results considering
the shearing strains in the middle surface of the walls are compared with the ones neglecting
the shearing strains in Table 4 in which five equally spaced Simpson's nodal points are
used.

From the examples as shown in Table 4. it can be seen that the effect of the shearing
strains in the middle surface of the walls on the lateral buckling is small. Although this
comparison cannot fully exhaust the comparative analysis owing to the fact that the
shearing strains are considered directly only in the present formula. the conclusion should

Table 4. Effect of shearing strains on values of P"

Cases

'" is neglected
;'" is considered

Differences

Example of Thevendran 1'1 al.

681.0773 N
681.0501 N

0.01 'Yo

Example of Away 1'1 al.

75.16847 kips
75.11375 kips

0.07%
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Table 5. Effect of number of the nodal points taken
on P"

1351

Cases

11=2
II = 3
II = 4
II = 5
II = 6

Example I

681.4723 N
6807152 N
680.5875 N
680.5660 N
680.5551 N

Example 2

75.16751 kips
7508400 kips
75.071 0 I kips
75.06755 kips
75.06634 kips

II + I is the number of Simpson's nodal points taken.

be accepted because, for the case of open cross-section, the ratio of the St Venant torsional
rigidity GJ to the warping rigidity Elw over the cross-section is low. In comparison with the
primary St Venant shear stresses, the secondary shear stresses due to the shearing strains
in the middle surface of the walls should be small, so that their deformation effect may be
neglected. On the other hand, for a thin-walled closed member, their effects on torsional
equilibrium are not negligible because of the large lever arms with which they act.

EFFECT OF NUMBER OF SIMPSON'S NODAL POINTS TAKEN ON RESULTS

If we divided the interval (a, b) into 11 strips, where 11 is even, we can write

f"f(':) d.: ::::: (b-a);3U;) +4fl +2/~ +4/, +2/~ + ... +2r,-~+4/;,_] +f,)·

"

This is Simpson's rule, whose error is approximately (Scraton, 1984)

(37)

The relative error between 11 and 11 - I strips is taken as

(38)

It is found from eqn (38) that taking too many numbers is futile because when 11 --->X,

the relative error approximates to I. To select a suitable 11, the values of the lateral buckling
load are examined by taking different numbers of Simpson's nodal points. The differences
in the results due to the five different numbers taken in the course of numerical integration
as shown in Table 5 almost disappear when 11 = 3-6. With four strips we have virtually got
machine accuracy.

CONCLUSIONS

From the investigations in this paper, the following conclusions can be drawn.

(a) An energy equation for the lateral buckling of thin-walled open member has been
derived in which the effects of torsion, warping especially, and the shearing strains in the
middle surface of the walls are taken into account. The equation can be applied for prismatic
thin-walled member with any kind of open cross-section, for any loading system, and for
end boundary conditions.

(b) A numerical analysis for the lateral buckling of doubly symmetrical simply sup­
ported thin-walled open member by using optimization technique has been presented in
this paper. In comparison with the known results from experiment and finite element
method, a satisfactory agreement has been obtained here.

(c) The same method can be applied for other types of load and end constraint
conditions.
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(d) The effect of the shearing strains in the middle surface of the walls on lateral
buckling of simply supported thin-walled I-member having double symmetrical cross­
section is small.

(c) In the course of numerical integration, taking too many numbers of Simpson's
nodal point is futile.
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